2007 APS USER WORKSHOP

Overcoming insufficient oversampling ratio usi ng predetermined partial information (Hard x-ray coherent diffraction imaging)

Do Young Noh

Gwangju Institute of Science and Technology K
OREA

Collaborators

Sang Soo Kim, Shashidhara Marathe, Su Nam Kim (GIST)

Dr. Hyon Chol Kang (APRI-GIST)

Dr. A. Sandy, Dr. S. Narayanan (APS, ANL)

Supported by

Korean Science and Engineering Foundation

through National Research Laboratory (NRL) program for X-ray Laboratory for Nano-Scale Phenomena

Advanced Photonic Research Institute, GIST

User Program for Ultra-Short Quantum Beam Facility

Outline

Diffraction Imaging

Generalized Phase Retrieval Algorithm

Test: He-Ne diffraction

■ Mard X-ray (7.5 KeV) Diffractive Imaging

Diffraction / Microscopy

Coherent X-ray & Incoherent X-ray Diffraction

Incoherent X-ray diffraction

$$S(\vec{q}) = \sum_{\text{all volume}} \int_{\text{coherent volume}} \rho(\vec{r}) e^{-i\vec{q}\cdot\vec{r}} \Big|^{2}$$

$$= \left\langle \left| \int_{\text{coherent volume}} \rho(\vec{r}) e^{-i\vec{q}\cdot\vec{r}} \right|^{2} \right\rangle$$

$$= \left\langle \left| \int_{\text{coherent volume}} \rho(\vec{r}) e^{-i\vec{q}\cdot\vec{r}} \right|^{2} \right\rangle$$

- ✓ Ensemble average of the Fourier transform inside the coherent volume
- ✓ Statistical average of the atomic scale structure

Coherent X-ray diffraction

$$S(\vec{q}) = \left| \int_{\text{coherent volume}} \rho(\vec{r}) e^{-i\vec{q}\cdot\vec{r}} \right|^2$$

- ✓ Exact Fourier transform inside the coherent volume
- ✓ Individual and instantaneous structure

Coherent x-ray diffraction microscopy

- ✓ Nanometer scale resolution (ultimately atomic scale): single particle diffraction
- ✓ Three dimensional lensless imaging
- ✓ In-situ non-destructive imaging

Phase Recovery: Oversampling

Sampling at frequency $2\pi/L$ is not enough to resolve interference fringes

$$|F(\mathbf{k})| = \left| \sum_{\mathbf{r}=0}^{N-1} \rho(\mathbf{r}) e^{2\pi i \mathbf{k} \cdot \mathbf{r}/N} \right|$$

$$\mathbf{k} = 0, 1, 2, \dots N-1$$

	# of unknown variables	# of independent equations
1D	2N	N
2D	2N ²	N^2
3D	2N ³	N^3

Minimum oversampling ratio is 2

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, Nature 400, 342 (1999).

Oversampling Method

$$g(\mathbf{r}) = \begin{cases} \rho(\mathbf{r}) & 0 \le \mathbf{r} \le N - 1 \\ 0 & N \le \mathbf{r} \le 2N - 1 \end{cases}$$

$$|F(\mathbf{k})| = \sum_{\mathbf{r}=0}^{2N-1} g(\mathbf{r}) e^{2\pi i \mathbf{k} \cdot \mathbf{r}/(2N)}$$
 Reciprocal space amplitude constraint

Oversampling ratio

$$\sigma = \frac{electron\ density\ region\ +\ no-density\ region}{electron\ density\ region}$$

σ > 2: the phase information exists inside the diffraction intensity!

J. Miao, P. Charalambous, J. Kirz, and D. Sayre, Nature 400, 342 (1999).

Elementary Projections

Support Projection

$$\Pi_{S}(\vec{\rho}) = \begin{cases} \rho_{r} & \text{for } r \in S \\ 0 & \text{otherwise} \end{cases}$$

Fourier Modulus Projection

$$\Pi_F = F^{-1} \circ \widetilde{\Pi}_F \circ F$$

$$\Pi_{\scriptscriptstyle F}(ec{
ho})$$

Iterative Phase Retrieval Algorithms

$$\Pi_{S}[\rho(\vec{r})] = \begin{cases} \rho(\vec{r}) & \text{for } r \in S \\ 0 & \text{otherwise} \end{cases}$$

<HIO Algorithm>

$$\vec{\rho}_{n+1}(r) = \begin{cases} \Pi_F[\vec{\rho}_n(r)] & r \in S \\ \vec{\rho}_n(r) - \beta \cdot \Pi_F[\vec{\rho}_n(r)] & r \notin S \end{cases}$$

J.R. Fienup, Appl. Opt. 21, 2758 (1982)

<Difference Map>

$$\begin{aligned} \vec{\rho}_{n+1} &= \vec{\rho}_n + \beta \Delta \vec{\rho}_n \\ \Delta &= \Pi_S \circ [(1+\gamma_2)\Pi_F - \gamma_2] - \Pi_F \circ [(1+\gamma_1)\Pi_S - \gamma_1] \end{aligned}$$

J.R. Fienup and C.C. Wackerman, J. Opt.Soc.Am. A3,1897(1986).

J.R. Fienup, J. Opt. Soc.Am. A4,118(1987).

Test of Phase Retrieval Algorithm

2D

Generalized Phase Retrieval Algorit hm

Generalized Support Projection

$$\Pi_{S(\vec{f})}(\vec{\rho}) = \begin{cases} \rho_r & \text{for } r \in S \\ f_r & \text{for } r \notin S \end{cases}$$

$$\begin{array}{c} \Pi_{S(\vec{f})} \\ \hline \end{array}$$

 $\vec{\rho}$

$$\Pi_{{ ext{S}(ec{ ext{f}}\,)}}(ec{
ho})$$

Phase Retrieval using predetermined information

Generalized Iterative Phase Retrieval Algorithms

$$\Pi_{S}^{\vec{K}}[\rho(\vec{r})] = \begin{cases} \rho(\vec{r}) & \text{for } r \in S \\ K(\vec{r}) & \text{otherwise} \end{cases}$$

<HIO Algorithm>

$$\vec{\rho}_{n+1}(r) = \begin{cases} \Pi_F[\vec{\rho}_n(r)] & r \in S \\ \vec{\rho}_n(r) + \beta \{\vec{K}(r) - \Pi_F[\vec{\rho}_n(r)]\} & r \notin S \end{cases}$$

<Difference Map>

$$\vec{\rho}_{n+1} = \vec{\rho}_n + \beta \Delta \vec{\rho}_n$$

$$\Delta = \Pi_S^{\vec{K}} \circ [(1 + \gamma_2)\Pi_F - \gamma_2] - \Pi_F \circ [(1 + \gamma_1)\Pi_S^{\vec{K}} - \gamma_1]$$

Test of the Generalized Phase Retri eval Algorithm with He-Ne Laser Diffraction

He-Ne Laser Experimental Setup

Typical Diffraction & Imaging

Reconstruction

Optical Image

Diffraction Pattern

Image reconstruction

Reconstruction Using Predetermined Information

Image reconstruction with predetermined information

Dependence on Oversampling Ratio

Ordinary oversampling

Generalized oversampling

$$\sigma = 3.0$$

$$\sigma = 2.5$$

$$\sigma = 2.0$$

Hard x-ray coherent diffraction imaging

Advanced Photon Source

Schematic Setup (APS-8ID)

E=7.45 keV

 $\lambda = 0.17 \text{ nm}$

Central Pixels: Attenuators

AI :360 μ m

Atten. factor: 0.0037

AI :160 HM

Atten. factor: 0.083

no attenuator

CCD Model: PI-LCX1300(Be window type)

Attenuator: Al foils for UHV purpose.

Total Expose time: 100s

(200 frames with expose time, 0.5s, were gathered safely)

DATA PROCESSING

Merged Data

Choose the maximum intensity direction and divide the corresponding factor

Final Data

Sampling distance in real space ~ 9.3 μ m

Q range: ~ 0.061 Å -1

Test Pattern 1: Gold Square

Gold Letter: G

Image Reconstruction(HIO)

HIO Method

Iteration~ 3000

Err ~ 0.1

Artifact comes from the missing 2nd speckle

2.02 µm

2.02 µm

2.12 µm

2.12 µm

SEM Image

HIO Method
Iteration~ 3000

Err ~ 0.05

Missing data -> using Y.Nishino method (Y.Nishino et al. Phys.Rev.B 68,220101(2003)

Image Reconstruction

(SEM)

(Reconstructed)

Testing the generalized algorithm with hard x-rays

Sample Geometry

Diffraction pattern of an ellipse

Image Reconstruction of an ellipse

Reconstructed Image (HIO)

Calculated diffraction pattern

Two particle interference pattern: Hard x-ray

Testing the generalized algorithm (on going)

Two ellipse interference pattern: Hard x-ray

Testing the generalized algorithm

Ordinary versus generalized algorithm

Direct HIO

Generalized HIO

Testing the generalized algorithm

Prospects of hard x-ray coherent diffraction imaging

Bright sides

- High resolution: wavelength of order 0.15 nm (single molecular structure often require resolution below 1 nm)
- Coherency : transverse coherence of order 10 μ m (in most cases, field of view is less than 5 μ m)
- Non vacuum applications (in-situ, in-vivo, ...)

Limiting factors

- Need higher flux x-ray sources → Future x-ray sources
- CCD detectors of large dynamic ranges are required
- Sample handling & environments (Dedicated beamlines ...)

Applications of hard x-ray coherent diffraction imaging

Applications in nanotechnology (inorganic/organic)

Reflection geometry is required Non-isolated specimen (x-ray pinhole) Buried Interface structure (may require sample thinning)

VOLUME 92, NUMBER 24

PHYSICAL REVIEW LETTERS

Quantum dots

nano structures

Applications of hard x-ray coherent diffraction imaging

- Molecular level technology (single molecules, biology)

Sample handling (radiation damage)
Sub nanometer resolution

Protein crystallography
Solution small angle x-ray scattering

http://www.rekihaku.ac.jp/e-rekihaku/115/cover.html

Applications of Coherent Diffraction Imaging

Nano dot formation kinetics by ion sputtering Pd (001) surface

Volume 92, Number 24

PHYSICAL REVIEW LETTERS

Quantum dot structures

Nano-pattern

Fig. 1. AFM image of uncapped In_{0.5}Ga_{0.5}As quantum dots formed on GaAs(001) surface.

Physica B 336 (2003) 98-102

Summary

- Developed generalized oversampling algorithm
- Verified with He-Ne laser diffraction
- Achieved hard x-ray coherent diffraction imaging

Wavelength: 0.17 nm

Resolution ~ 20 nm Field of view ~ 2 μ m

- Testing the generalized algorithm with x-ray diffraction

